// config.json
{
"version": "2.5.0",
"database": {
"type": "distributed",
"shards": 16,
"replication_factor": 3
},
"ai_models": [
"gpt-4-turbo",
"stable-diffusion-xl",
"dall-e-3",
"anthropic-claude-2"
],
"max_concurrent_simulations": 10000,
"default_memory_per_sim": "4GB"
}
// simulation_engine.rs use std::sync::Arc; use tokio::sync::Mutex; use crate::ai_models::AIModel; use crate::virtual_dom::VirtualDOM; pub struct SimulationEngine { ai_model: Arc<dyn AIModel>, virtual_dom: Arc<Mutex<VirtualDOM>>, memory: Arc<Mutex<SimMemory>>, } impl SimulationEngine { pub async fn process_user_input(&self, input: &str) -> Result<String, SimError> { let context = self.memory.lock().await.get_context(); let ai_response = self.ai_model.generate(input, &context).await?; let mut dom = self.virtual_dom.lock().await; dom.update_from_ai_response(&ai_response)?; Ok(dom.render_to_html()) } // ... other methods ... }
// ai_integration.py import asyncio from typing import List, Dict from transformers import AutoModelForCausalLM, AutoTokenizer class AIIntegration: def __init__(self, model_name: str): self.model = AutoModelForCausalLM.from_pretrained(model_name) self.tokenizer = AutoTokenizer.from_pretrained(model_name) async def generate_response(self, prompt: str, context: Dict[str, any]) -> str: inputs = self.tokenizer.encode(prompt + str(context), return_tensors="pt") outputs = await asyncio.to_thread(self.model.generate, inputs, max_length=150) return self.tokenizer.decode(outputs[0]) # ... other AI-related functions ...
// virtual_dom.ts interface VNode { tag: string; props: Record<string, any>; children: (VNode | string)[]; } class VirtualDOM { private root: VNode; constructor() { this.root = { tag: 'div', props: {}, children: [] }; } updateFromAIResponse(response: string) { // Parse AI response and update virtual DOM // ... } renderToHTML(): string { return this.renderNode(this.root); } private renderNode(node: VNode): string { const childrenHTML = node.children .map(child => typeof child === 'string' ? child : this.renderNode(child)) .join(''); const propsString = Object.entries(node.props) .map(([key, value]) => `${key}="${value}"`) .join(' '); return `<${node.tag} ${propsString}>${childrenHTML}</${node.tag}>`; } } // ... additional virtual DOM methods ...
-- schema.sql CREATE TABLE users ( id UUID PRIMARY KEY, username VARCHAR(50) UNIQUE NOT NULL, email VARCHAR(100) UNIQUE NOT NULL, password_hash VARCHAR(255) NOT NULL, created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP ); CREATE TABLE simulations ( id UUID PRIMARY KEY, user_id UUID REFERENCES users(id), title VARCHAR(100) NOT NULL, description TEXT, created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP, last_accessed TIMESTAMP WITH TIME ZONE ); CREATE TABLE simulation_snapshots ( id UUID PRIMARY KEY, simulation_id UUID REFERENCES simulations(id), data JSONB NOT NULL, created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP ); -- ... additional tables and indices ...
// api_routes.js const express = require('express'); const router = express.Router(); const SimulationController = require('./controllers/SimulationController'); router.post('/simulations', SimulationController.create); router.get('/simulations/:id', SimulationController.get); router.put('/simulations/:id', SimulationController.update); router.delete('/simulations/:id', SimulationController.delete); router.post('/simulations/:id/interact', SimulationController.interact); router.get('/simulations/:id/history', SimulationController.getHistory); // ... other routes ... module.exports = router;
// websocket_handler.go package main import ( "github.com/gorilla/websocket" "log" "net/http" ) var upgrader = websocket.Upgrader{ ReadBufferSize: 1024, WriteBufferSize: 1024, } func handleWebSocket(w http.ResponseWriter, r *http.Request) { conn, err := upgrader.Upgrade(w, r, nil) if err != nil { log.Println(err) return } defer conn.Close() for { messageType, p, err := conn.ReadMessage() if err != nil { log.Println(err) return } // Process the message and generate a response response := processWebSocketMessage(string(p)) if err := conn.WriteMessage(messageType, []byte(response)); err != nil { log.Println(err) return } } } func processWebSocketMessage(message string) string { // Implement message processing logic // ... return "Processed: " + message }
// app.js import React, { useState, useEffect } from 'react'; import axios from 'axios'; function App() { const [simulations, setSimulations] = useState([]); const [currentSim, setCurrentSim] = useState(null); useEffect(() => { fetchSimulations(); }, []); const fetchSimulations = async () => { const response = await axios.get('/api/simulations'); setSimulations(response.data); }; const createSimulation = async (title, description) => { await axios.post('/api/simulations', { title, description }); fetchSimulations(); }; const interactWithSimulation = async (input) => { const response = await axios.post(`/api/simulations/${currentSim.id}/interact`, { input }); setCurrentSim(response.data); }; // Render components return ( <div> // ... React components for UI ... </div> ); } export default App;
# ml_model.py import torch import torch.nn as nn class WebsimAIModel(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(WebsimAIModel, self).__init__() self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): out, _ = self.lstm(x) out = self.fc(out[:, -1, :]) return out # Initialize and train the model model = WebsimAIModel(input_size=100, hidden_size=256, output_size=50) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # Training loop (simplified) for epoch in range(num_epochs): for batch in dataloader: inputs, targets = batch outputs = model(inputs) loss = criterion(outputs, targets) optimizer.zero_grad() loss.backward() optimizer.step() # Save the trained model torch.save(model.state_dict(), 'websim_ai_model.pth')
# docker-compose.yml
version: '3.8'
services:
webapp:
build: .
ports:
- "8080:8080"
environment:
- DATABASE_URL=postgres://user:password@db:5432/websim
- REDIS_URL=redis://cache:6379
depends_on:
- db
- cache
db:
image: postgres:13
volumes:
- postgres_data:/var/lib/postgresql/data
environment:
- POSTGRES_DB=websim
- POSTGRES_USER=user
- POSTGRES_PASSWORD=password
cache:
image: redis:6
volumes:
- redis_data:/data
volumes:
postgres_data:
redis_data:
At WebSim AI, we're redefining the possibilities of the internet through Neuro-Symbolic multi-agent architectures. This page allows you to access, customize, and run a fully functional WebSim system.
Begin your journey by starting a new simulation. Utilize the full capabilities of our multi-agent architecture.
Adjust various parameters to customize the behavior of the WebSim system.
Utilize the full potential of WebSim AI by accessing secret and advanced features.
Verify the integrity and performance of the system by running diagnostics.